Skip to main content

Hybrid modeling for Earth system model

Recently I have been thinking about some philosophy in how model the real world.

For many of us working on the Earth system model, we spent great efforts trying to understand the physical world. For example, we now have a reasonably good idea about how water flows within the system.  

Based on our understanding of the physical laws, we built quite a few of process-based models to model and predict different types of systems.

On the other hand, there are also processes that are not "simply" governed by physics. For example, human activities, or some stochastic processes like wildfire. 

For some processes, it would be more beneficial to use agent-based modeling (ABM) approach. For example, how an individual tree interacts with its surrounding environment, fighting for water and nutrients, should be possible to be implemented using the ABM.

Other processes, such as animal behavior models, are also similar to ABM.

The new question is: how can we merge the process-based model, or equation-based (EBM) with ABM in the Earth system model. What is more interesting is how can we make use of Artificial Intelligence (AI), which ABM itself is based on, to optimize our model. 

To answer these questions, we need to understand the boundary between EBM and ABM and then we can design different processes using either approach. Eventually, we may have a hybrid model for our use.


Popular posts from this blog

Spatial datasets operations: mask raster using region of interest

Climate change related studies usually involve spatial datasets extraction from a larger domain.
In this article, I will briefly discuss some potential issues and solutions.

In the most common scenario, we need to extract a raster file using a polygon based shapefile. And I will focus as an example.

In a typical desktop application such as ArcMap or ENVI, this is usually done with a tool called clip or extract using mask or ROI.

Before any analysis can be done, it is the best practice to project all datasets into the same projection.

If you are lucky enough, you may find that the polygon you will use actually matches up with the raster grid perfectly. But it rarely happens unless you created the shapefile using "fishnet" or other approaches.

What if luck is not with you? The algorithm within these tool usually will make the best estimate of the value based on the location. The nearest re-sample, but not limited to, will be used to calculate the value. But what about the outp…

Numerical simulation: ode/pde solver and spin-up

For Earth Science model development, I inevitably have to deal with ODE and PDE equations. I also have come across some discussion related to this topic, i.e.,

In an attempt to answer this question, as well as redefine the problem I am dealing with, I decided to organize some materials to illustrate our current state on this topic.

Models are essentially equations. In Earth Science, these equations are usually ODE or PDE. So I want to discuss this from a mathematical perspective.

Ideally, we want to solve these ODE/PDE with initial condition (IC) and boundary condition (BC) using various numerical methods.

Because of the nature of geology, everything is similar to its neighbors. So we can construct a system of equations which may have multiple equation for each single grid cell. Now we have an array of equation…

Watershed Delineation On A Hexagonal Mesh Grid: Part A

One of our recent publications is "Watershed Delineation On A Hexagonal Mesh Grid" published on Environmental Modeling and Software (link).
Here I want to provide some behind the scene details of this study.

(The figures are high resolution, you might need to zoom in to view.)

First, I'd like to introduce the motivation of this work. Many of us including me have done lots of watershed/catchment hydrology modeling. For example, one of my recent publications is a three-dimensional carbon-water cycle modeling work (link), which uses lots of watershed hydrology algorithms.
In principle, watershed hydrology should be applied to large spatial domain, even global scale. But why no one is doing it?  I will use the popular USDA SWAT model as an example. Why no one is setting up a SWAT model globally? 
There are several reasons we cannot use SWAT at global scale: We cannot produce a global DEM with a desired map projection. SWAT model relies on stream network, which depends on DEM.…