Skip to main content

Paper discussion special issue the ECO3D model

Recently we have published a paper on Journal of Advanced Modeling of Earth System.

This is also a personal milestone because it is the last chapter of my PhD thesis. Below I will provide some details of this work.

In many of my earlier posts, I have discussed that our Earth system is always evolving in a three dimensional domain. The water flows, the atmosphere flows as well.

However, in our numerical simulations, we do not always use 3D method. Sometimes we just don’t felt it necessary. For example, we always assume rain drops on land surface in vertical direction even though rain can attack our windows with an angel.

In some other scenarios, we don’t use 3D because of computational resources. We can build a fully 3D model. But it is not useable if we don’t have the computer power to run it.

Land surface model is an important component in ESM. But current generation of LSM is 1D instead of 3D. There are many reasons for this design, which I plan not to cover here. Instead, I will focus on why 3D makes sense and what is the challenge.

From 1D to 3D means that each grid is aware of its neighborhood. More importantly, it talks to its neighborhood and exchanges maybe gifts.

To put it in the model language, traditionally, each grid is isolated from others, so water and carbon budget are calculated in each grid independently. In 3D, a grid can send or receive some water and carbon from neighborhood. It’s like a grid at mountain valley can receive water from mountain ridge. Isn’t that making much more sense?
On land, each grid cell can connect to its 4/6/8 neighbors:
They can also connect with river:

Water can carry lots of stuff, including carbon in the dissolved mode. Water can also carry other stuff such as sediment and debris. 

So without 3D, we cannot actually calculate how much stuff are carried by water from one grid to another.

How to implement a 3D approach is another story, in ECO3D, we used a method widely used in the hydrology community, an explicit forward Euler method. There are several advantages of this method. I personally think that it’s suitable for parallel computing and does not require expensive matrix solvers.

We also introduced a brand new DOC model, DOC is one of the carbon that flows with water, apparently. This is currently the only litter DOC model that considers lateral flow.
Currently we haven’t consider the DOC in the groundwater system.

Other solutes including particles can also be added and modeled by ECO3D in the near future.

As we have more solutes in the water flow, it’s natural to have biogeochemistry and reactive transport as well.

There are many scientific questions we can answer with this model. But my time is limited so I will slowly try them out in the near future.


Popular posts from this blog

Spatial datasets operations: mask raster using region of interest

Climate change related studies usually involve spatial datasets extraction from a larger domain.
In this article, I will briefly discuss some potential issues and solutions.

In the most common scenario, we need to extract a raster file using a polygon based shapefile. And I will focus as an example.

In a typical desktop application such as ArcMap or ENVI, this is usually done with a tool called clip or extract using mask or ROI.

Before any analysis can be done, it is the best practice to project all datasets into the same projection.

If you are lucky enough, you may find that the polygon you will use actually matches up with the raster grid perfectly. But it rarely happens unless you created the shapefile using "fishnet" or other approaches.

What if luck is not with you? The algorithm within these tool usually will make the best estimate of the value based on the location. The nearest re-sample, but not limited to, will be used to calculate the value. But what about the outp…

Numerical simulation: ode/pde solver and spin-up

For Earth Science model development, I inevitably have to deal with ODE and PDE equations. I also have come across some discussion related to this topic, i.e.,

In an attempt to answer this question, as well as redefine the problem I am dealing with, I decided to organize some materials to illustrate our current state on this topic.

Models are essentially equations. In Earth Science, these equations are usually ODE or PDE. So I want to discuss this from a mathematical perspective.

Ideally, we want to solve these ODE/PDE with initial condition (IC) and boundary condition (BC) using various numerical methods.

Because of the nature of geology, everything is similar to its neighbors. So we can construct a system of equations which may have multiple equation for each single grid cell. Now we have an array of equation…

Lessons I have learnt during E3SM development

I have been involved with the E3SM development since I joined PNNL as a postdoc. Over the course of time, I have learnt a lot from the E3SM model. I also found many issues within the model, which reflects lots of similar struggles in the lifespan of software engineering.

Here I list a few major ones that we all dislike but they are around in almost every project we have worked on.

Excessive usage of existing framework even it is not meant to Working in a large project means that you should NOT re-invent the wheels if they are already there. But more often, developers tend to use existing data types and functions even when they were not designed to do so. The reason is simple: it is easier to use existing ones than to create new ones. For example, in E3SM, there was not a data type to transfer data between river and land. Instead, developers use the data type designed for atmosphere and land to do the job. While it is ok to do so, it added unnecessary confusion for future development a…