Skip to main content

Surface water hydrology modeling: deal with different types of precipitation

In surface water hydrology, precipitation is one of the most important components.
However, within most hydrology models, it is unclear of how precipitation is actually represented.
For example, in a typical water cycle illustration from Wiki, precipitation is described as
Here is the question, what form does precipitation actually take when it falls to land surface?
Water can be in either liquid (water, rain), solid (ice, snow) or gas (water vapor) forms. How about precipitation? Surely most of time precipitation is either rain of snow. In some cases, it takes form in hail, etc.

Since the physical proprieties of water and snow are significantly different, it is necessary to distinguish them within surface water hydrology models.
In some scenarios, rain and snow may co-exist in a mixed precipitation event. In this case, surface water hydrology models need to deal with both of them. The difficulty is how to manage the two-phase mass and energy balance.
A complete comparison of how different models deal with this scenario will be presented later.

Updates: 21, January 2017
After reviewing some typical surface hydrology model, I decided to use the following scheme in my ecosystem model.
This approach uses the maximum and minimum temperature and two parameters to decide the precipitation type.
When it is a mixture event, a linear method is used estimate the portion of rain or snow in precipitation.


Copy right of  Purdue University. Please contact me if you want to use this figure. Thanks.


Comments

Popular posts from this blog

Spatial datasets operations: mask raster using region of interest

Climate change related studies usually involve spatial datasets extraction from a larger domain.
In this article, I will briefly discuss some potential issues and solutions.

In the most common scenario, we need to extract a raster file using a polygon based shapefile. And I will focus as an example.

In a typical desktop application such as ArcMap or ENVI, this is usually done with a tool called clip or extract using mask or ROI.

Before any analysis can be done, it is the best practice to project all datasets into the same projection.

If you are lucky enough, you may find that the polygon you will use actually matches up with the raster grid perfectly. But it rarely happens unless you created the shapefile using "fishnet" or other approaches.

What if luck is not with you? The algorithm within these tool usually will make the best estimate of the value based on the location. The nearest re-sample, but not limited to, will be used to calculate the value. But what about the outp…

Numerical simulation: ode/pde solver and spin-up

For Earth Science model development, I inevitably have to deal with ODE and PDE equations. I also have come across some discussion related to this topic, i.e.,

https://www.researchgate.net/post/What_does_one_mean_by_Model_Spin_Up_Time

In an attempt to answer this question, as well as redefine the problem I am dealing with, I decided to organize some materials to illustrate our current state on this topic.

Models are essentially equations. In Earth Science, these equations are usually ODE or PDE. So I want to discuss this from a mathematical perspective.

Ideally, we want to solve these ODE/PDE with initial condition (IC) and boundary condition (BC) using various numerical methods.
https://en.wikipedia.org/wiki/Initial_value_problem
https://en.wikipedia.org/wiki/Boundary_value_problem

Because of the nature of geology, everything is similar to its neighbors. So we can construct a system of equations which may have multiple equation for each single grid cell. Now we have an array of equation…

Lessons I have learnt during E3SM development

I have been involved with the E3SM development since I joined PNNL as a postdoc. Over the course of time, I have learnt a lot from the E3SM model. I also found many issues within the model, which reflects lots of similar struggles in the lifespan of software engineering.

Here I list a few major ones that we all dislike but they are around in almost every project we have worked on.

Excessive usage of existing framework even it is not meant to Working in a large project means that you should NOT re-invent the wheels if they are already there. But more often, developers tend to use existing data types and functions even when they were not designed to do so. The reason is simple: it is easier to use existing ones than to create new ones. For example, in E3SM, there was not a data type to transfer data between river and land. Instead, developers use the data type designed for atmosphere and land to do the job. While it is ok to do so, it added unnecessary confusion for future development a…